第1431题:1的立方根
令1=(a+bi)31=(a+bi)^31=(a+bi)3 , (a,b∈R)(a,b \in \bold R)(a,b∈R) 可以计算出 111 的三个立方根分别是( ).
A. 1,1,1, −12+32i,-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} \mathrm{i},−21+2√3i, −12−32i-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2} \mathrm{i}−21−2√3i
B. 1,−22+32i,1,-\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2} \mathrm{i},1,−2√2+2√3i, −22−32i-\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2} \mathrm{i}−2√2−2√3i
C. 1,12+32i,1,\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} \mathrm{i},1,21+2√3i, 12−32i\dfrac{1}{2}-\dfrac{\sqrt{3}}{2} \mathrm{i}21−2√3i
D. 1,22+32i,1,\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2} \mathrm{i},1,2√2+2√3i, 22−32i\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2} \mathrm{i}2√2−2√3i