第1219题:计算复合函数的导数
已知 y=sin2(2x+π4)y=\sin^2 \Big ( 2x+\dfrac{\pi}{4} \Big )y=sin2(2x+4π) ,则( )
A. y′=2cosy' = 2 \cosy′=2cos (2x+π4) \Big ( 2x+\dfrac{\pi}{4} \Big )(2x+4π)
B. y′=2cosy' = 2 \cosy′=2cos (4x+π2) \Big ( 4x+\dfrac{\pi}{2} \Big )(4x+2π)
C. y′=2siny' = 2 \siny′=2sin (2x+π4) \Big ( 2x+\dfrac{\pi}{4} \Big )(2x+4π)
D. y′=2siny' = 2 \siny′=2sin (4x+π2) \Big ( 4x+\dfrac{\pi}{2} \Big )(4x+2π)