第842题:对数
计算
log395+log35\log_3 \dfrac{9}{5} +\log_3 5log359+log35 =A=A=A
(log29)⋅(log34)(\log_2 9) \cdot (\log_3 4)(log29)⋅(log34) =B=B=B
loga(MN)\log_a (MN)loga(MN) =logaM+logaN=\log_a M + \log_a N=logaM+logaN
logaMN\log_a \dfrac{M}{N}logaNM =logaM−logaN=\log_a M - \log_a N=logaM−logaN