第1555题:利用欧拉公式求解
[问题]
若 a,b,c,x,y,z∈R ,满足
cos(x+y+z)= acosx+bcosy+ccosz ,
sin(x+y+z)= asinx+bsiny+csinz . 求
acos(y+z)+bcos(x+z) +ccos(x+y) 及
asin(y+z)+bsin(x+z) +csin(x+y) 的值.
[解]
利用欧拉公式,有
eix=cosx+isinx
eiy=cosy+isiny
eiz=cosz+isinz
ei(x+y+z)= cos(x+y+z)+isin(x+y+z)
由已知条件可得
aeix+beiy+ceiz
=(acosx+bcosy+ccosz) +i(asinx+bsiny+csinz)
=cos(x+y+z) +isin(x+y+z)
=ei(x+y+z)
上式两边同乘以 e−i(x+y+z) 得
ae−i(y+z)+be−i(x+z)+ce−i(x+y)=1
令ae−i(y+z)+be−i(x+z) +ce−i(x+y) =Z
则有 acos(y+z)+bcos(x+z) +ccos(x+y)= ReZ =1
asin(y+z)+bsin(x+z) +csin(x+y)= −ImZ
那么,ImZ 等于多少?