安卓手机扫描二维码安装App

第1555题:利用欧拉公式求解



[问题]


a,b,c,xa,b,c,x,y,zR ,y,z \in \bold{R} ,满足


cos(x+y+z)=\cos(x+y+z)= acosx+bcosy+ccosz a \cos{x} +b \cos{y} +c \cos{z}

sin(x+y+z)=\sin(x+y+z)= asinx+bsiny+csinza \sin{x} +b \sin{y} +c \sin{z} . 求


acos(y+z)+bcos(x+z)a\cos(y+z)+b\cos(x+z) +ccos(x+y)+c\cos(x+y)

asin(y+z)+bsin(x+z)a\sin(y+z)+b\sin(x+z) +csin(x+y)+c\sin(x+y) 的值.


[]


利用欧拉公式,有


eix=cosx+isinx\mathrm{e}^{ix}=\cos x + i \sin x

eiy=cosy+isiny\mathrm{e}^{iy}=\cos y + i \sin y

eiz=cosz+isinz\mathrm{e}^{iz}=\cos z + i \sin z

ei(x+y+z)=\mathrm{e}^{i(x+y+z)}= cos(x+y+z)+isin(x+y+z)\cos (x+y+z) + i \sin (x+y+z) 


由已知条件可得


aeix+beiy+ceiza\mathrm{e}^{ix}+b\mathrm{e}^{iy}+c\mathrm{e}^{iz}

=(acosx+bcosy+ccosz)(a \cos x+ b\cos y+c \cos z) +i(asinx+bsiny+csinz)+i(a \sin x +b \sin y +c \sin z)

=cos(x+y+z)\cos(x+y+z) +isin(x+y+z)+i\sin(x+y+z)

=ei(x+y+z)\mathrm{e}^{i(x+y+z)}


上式两边同乘以 ei(x+y+z)\mathrm{e}^{-i(x+y+z)}


aei(y+z)+bei(x+z)a\mathrm{e}^{-i(y+z)}+b\mathrm{e}^{-i(x+z)}+cei(x+y)=1 +c\mathrm{e}^{-i(x+y)}=1


aei(y+z)+bei(x+z)a\mathrm{e}^{-i(y+z)}+b\mathrm{e}^{-i(x+z)} +cei(x+y)+c\mathrm{e}^{-i(x+y)} =Z=Z


则有 acos(y+z)+bcos(x+z)a\cos(y+z)+b\cos(x+z) +ccos(x+y)=+c\cos(x+y)= ReZRe Z =1=1


asin(y+z)+bsin(x+z)a\sin(y+z)+b\sin(x+z) +csin(x+y)=+c\sin(x+y)= ImZ- Im Z  


那么,ImZIm Z  等于多少?

苹果手机扫描二维码安装App
我来回答