安卓手机扫描二维码安装App

第1844题:近似值



用微分法估算 cos(29.5°) \cos(29.5\degree) 的近似值,以下两种算法中哪个更精确一些?


方法一


f(x)f(x0)+f(x0)(xx0)f(x) \approx f(x_0)+f'(x_0)(x-x_0) ,有


cosx\cos x \approx cosx0sinx0(xx0) cos x_0 - \sin x_0 \cdot (x -x_0)


可令 x0=30°=π6x_0=30\degree=\dfrac{\pi}{6}



cos29.5°\cos 29.5\degree


=cos(π6π360)=\cos \Big ( \dfrac{\pi}{6} -\dfrac{\pi}{360} \Big ) 


cosπ6sinπ6(0.5°)\approx \cos \dfrac{\pi}{6}- \sin \dfrac{\pi}{6} \cdot ( -0.5 \degree)


=32+12π360=\dfrac{\sqrt{3}}{2} + \dfrac{1}{2} \cdot \dfrac{\pi}{360}


=32+π720= \dfrac{\sqrt{3}}{2} + \dfrac{\pi}{720}


0.866+0.004\approx 0.866+0.004


=0.870=0.870



方法二


cos2x=1sin2x\cos ^2 x =1 -\sin ^2 xsinxx\sin x \approx x


cos29.5°=1sin229.5°\cos 29.5 \degree =\sqrt{1- \sin ^2 29.5 \degree}


1(29.5π180)2\approx \sqrt{1 - \Big ( \dfrac{29.5 \pi }{180} \Big )^2}



10.51492\approx \sqrt{1-0.5149^2}


0.857\approx 0.857


苹果手机扫描二维码安装App
我来回答