第1814题:复合函数的导数
设函数 f(x)f(x)f(x) 和 g(x)g(x)g(x) 可导,且 f2(x)+g2(x)≠0f^2(x)+g^2(x) \ne 0f2(x)+g2(x)≠0 ,则函数 y=f2(x)+g2(x)y=\sqrt{f^2(x)+g^2(x)}y=√f2(x)+g2(x) 的导数是( ).
A. f′(x)+g′(x)f2(x)+g2(x)\dfrac{f'(x)+g'(x)}{\sqrt{f^2(x)+g^2(x)}}√f2(x)+g2(x)f′(x)+g′(x)
B. f′(x)+g′(x)2f2(x)+g2(x)\dfrac{f'(x)+g'(x)}{2\sqrt{f^2(x)+g^2(x)}}2√f2(x)+g2(x)f′(x)+g′(x)
C. f(x)f′(x)+g(x)g′(x)f2(x)+g2(x)\dfrac{f(x)f'(x)+g(x)g'(x)}{\sqrt{f^2(x)+g^2(x)}}√f2(x)+g2(x)f(x)f′(x)+g(x)g′(x)
D. g(x)f′(x)+f(x)g′(x)f2(x)+g2(x)\dfrac{g(x)f'(x)+f(x)g'(x)}{\sqrt{f^2(x)+g^2(x)}}√f2(x)+g2(x)g(x)f′(x)+f(x)g′(x)