第989题:两角和的余弦公式
cos75°=?\cos 75 \degree = ?cos75°=?
A. 6−24\dfrac{\sqrt{6}-\sqrt{2}}{4}4√6−√2
B. 6+24\dfrac{\sqrt{6}+\sqrt{2}}{4}4√6+√2
C. 5−24\dfrac{\sqrt{5}-\sqrt{2}}{4}4√5−√2
D. 5+24\dfrac{\sqrt{5}+\sqrt{2}}{4}4√5+√2
75=30+45.
用上一题中的图记公式太复杂了,下图用向量方式记忆:
OA→=(cosα,sinα)\overrightarrow{OA}=(\cos \alpha , \sin \alpha)OA=(cosα,sinα)
OB→=(cosβ,sinβ)\overrightarrow{OB}=(\cos \beta , \sin \beta)OB=(cosβ,sinβ)
OA→⋅OB→\overrightarrow{OA} \cdot \overrightarrow{OB}OA⋅OB
=(cosα,sinα)⋅(cosβ,sinβ)= (\cos \alpha , \sin \alpha) \cdot (\cos \beta , \sin \beta)=(cosα,sinα)⋅(cosβ,sinβ)
=cosαcosβ+sinαsinβ=\cos \alpha \cos \beta + \sin \alpha \sin \beta=cosαcosβ+sinαsinβ
cos(α−β)=cosθ\cos( \alpha -\beta) = \cos \thetacos(α−β)=cosθ
cos(α+β)=cos(α−(−β))\cos( \alpha + \beta) =\cos( \alpha - (-\beta))cos(α+β)=cos(α−(−β))