第2106题:线性方程的增广矩阵
计算线性方程组
{x1−2x2+3x3−x4+2x5=2,3x1−x2+5x3−3x4+x5=6,2x1+x2+2x3−2x4−x5=8.\begin{cases} x_1-2x_2+3x_3-x_4+2x_5=2, \\ 3x_1-x_2+5x_3-3x_4+x_5=6, \\ 2x_1+x_2+2x_3-2x_4-x_5=8. \end{cases}⎩⎪⎨⎪⎧x1−2x2+3x3−x4+2x5=2,3x1−x2+5x3−3x4+x5=6,2x1+x2+2x3−2x4−x5=8.
的系数矩阵
A=[1−23−123−15−31212−2−1]A=\begin{bmatrix} 1 & -2 & 3 & -1 & 2 \\ 3 & -1 & 5 & -3 & 1 \\ 2 & 1 & 2 & -2 & -1 \end{bmatrix}A=⎣⎡132−2−11352−1−3−221−1⎦⎤
的秩 rank(A)rank(A)rank(A) 及其增广矩阵
A‾=[1−23−1223−15−316212−2−18]\overline{A}=\begin{bmatrix} 1 & -2 & 3 & -1 & 2 & 2 \\ 3 & -1 & 5 & -3 & 1 & 6 \\ 2 & 1 & 2 & -2 & -1 & 8 \end{bmatrix}A=⎣⎡132−2−11352−1−3−221−1268⎦⎤
的秩 rank(A‾)rank(\overline{A})rank(A) .